This is surely interesting and it is also interesting to see my own position switching...

It starts to look like this whole case is purely mathematical and dependent on how the pre-conditions are defined.
mando,
What if we consider th epylos instead of bombs, since they are actually selected instead the bombs, which can be on which ever pylon:
RB = pylon with real bomb
L-TB = pylon with lost training bomb
K-TB = pylon with kept training bomb
Possible cases:
A: RB selected, L-TB lost, K-TB unselected (1/2)
B: K-TB selected, L-TB lost, RB unselected (1/2)

So is the problem actually based on interpretations. When we are counting probabilities for this one (once in a lifetime) case where the TB was lost from center position, can we say that it could also have been the right pylon if there was a training bomb?
-TB was lost from an unselected pylon.
or
-TB was lost from center pylon, which was unselected.
Does it affect building the equation, that we know the location (pylon) of the lost bomb? Also we dont know if it was TB1 or TB2 that was lost... just a TB... so how can we differentiate between them? If TB1 was red and TB2 yellow, it would be a completely different case, since we would know which TB was lost.
A: RB selected, TB lost from middle, TB unselected (1/2)
B: TB selected, TB lost from middle, RB unselected (1/2)
So... thinking while writing here

What if the bomb selector was kind of automatic (semi-intelligent) in such way that it would not tell the positions, only that one could switch with it to a next available bomb. Then we would not know the position of the lost bomb or the selected bomb.
Mando's program is actually performing like above. But if we are originally told that in this particular case the left was selected and TB was lost from middle, we seem to get too much information to apply it to Monty Hall scenario.
Should I now position myself somewhere in between??

If we had this automatic bomb selector, the question would go: "one unknown bomb is selected, a TB is lost from unknown position, should we switch from originally selected unknown position to the other unknown position?" ..... Yes, with 2/3 probability.
Since Mando originally stated that left was selected and center bomb was lost, it seems that we cannot use Monty Hall scenario in this case.. or can we? Do we calculate the pylons or the bombs
More comments anyone??

Accident for single case against intelligence (with options) for repetitive cases, which kind of make the location info irrelevant seems to make the difference..... like someone stated already quite early in this thread.
OK... made my mind

Without a selector I just described higher above (lets call it Monty Hall bomb selector) the Monty scenario does not apply to the original case.
Sorry Mando...
I seem to be a weather vane, but I still have enjoyed this argument

.. and thanks to everyone for your own arguments.. sorry for possible harsh words.