Remember how, while figuring out lunar module lifeboat procedures after the Apollo 10 simulation, Legler had worked out a way to run power from the lunar module to the command module back along the electrical umbilicals that connected the spacecraft? That was about to come in handy now, because that power could be used to recharge the Odyssey's batteries.
"The biggest problem was that initially the lunar module guys didn't know how much power they were going to need" for the Aquarius to serve its role as a lifeboat, remembers Aaron. For the first 30 hours, Aaron's power-up team didn't think the lunar module guys were going to have any power to spare for the Odyssey: about twelve hours after the explosion, "we talked to them about getting some power," says Aaron. "They threw us out of the room."
But the PC+2 burn had shortened Apollo 13's return flight sufficiently that the Aquarius would be able to supply the power needed to charge the batteries. Working with North American Aviation and Grumman, through lunar module gurus Hannigan and Mel Brooks in the SPAN room, to refine the procedure, Legler and Bill Peters wrote up the needed instructions. The charging process was "only 20 to 25 percent efficient," remembers Legler, but it was enough.
But even with fully charged batteries, the Odyssey risked running out of electricity before it splashed down. Batteries are rated using a term called ampere-hours. If you start with a 40 amp-hour re-entry battery, and then turn on a piece of equipment that uses 1 amp-hour, and it takes 8 hours to finish the re-entry and splashdown, you have only 32 amp-hours left to power everything else. But if you can delay turning on that piece of equipment until 2 hours before splashdown, now you have 38 amp-hours to go around. "It's not only a matter of how large a load is, but how long that load is on for," says Aaron. Once a system had been turned on in the Odyssey, it had to stay on, so "the only variable was how few systems could we turn on and how late could we wait?" he explains.
Aaron had an inspiration. Normally in a spaceship power-up sequence, one of the first things turned on is the instrumentation system so everyone can be sure that the rest of the sequence is progressing normally. But for Apollo 13, the instrumentation would be turned on last for a final check of the Odyssey just before re-entry began.
It Was A Gutsy Move. It required the crew—in particular the command module pilot, Swigert—to perform the entire power-up procedure in the blind. If he made a mistake, by the time the instrumentation was turned on and the error was detected, it could be too late to fix. But, as a good flight controller should, Aaron was confident his sequence was the right thing to do.
"I still wake up at nights in a cold sweat and wonder about that," an older and wiser Aaron told Spectrum, "because the one thing I wasn't conscious of, and I prided myself on being conscious of everything, was the condition of the crew." Despite the cold, and the fatigue, and the stress, the crew had voiced few complaints. "You couldn't tell from listening to their voices how bad conditions had got. When they got back I realized, 'Oh my goodness, I built this incredible procedure that had to be executed perfectly, and I handed it off to a crew that hadn't had any sleep for three days,' " shudders Aaron, "I've thought about that a lot, ever since."
But Swigert and the rest of the crew powered up the Odyssey, seemingly effortlessly. "Therein lies the reason we chose test pilots" to be astronauts, says Kraft. "They were used to putting their lives on the line, used to making decisions, used to putting themselves in critical situations. You wanted people who would not panic under those circumstances. These three guys, having been test pilots, were the personification of that theory," explains Kraft.
(Accident's Aftermath:: After being jettisoned from the command module, the Apollo 13 service module shows extensive damage, with an entire panel of its outer skin blown away.)
As part of the re-entry procedure, the crew jettisoned the damaged service module, snapping pictures and beaming down video of the huge gash in the side of the module as it tumbled into the distance [see photo, Accident's Aftermath]"There's one whole side of the spacecraft missing," radioed Lovell. "It looks like it got to the [main engine] bell, too," added Haise, validating Kranz's gut decision, four days earlier, to rule out using the main engine and go around the moon.
Then it was time to abandon the Aquarius and strap into the command module. For the lunar module controllers it was a bittersweet moment. "We were proud of the Aquarius and very thankful—it had really performed, did everything we asked it to do" remembers Legler. "It's hard to describe that feeling," says Hannigan, "thank God that we made it but..."
"Farewell, Aquarius, and we thank you," radioed Lovell back in 1970 as the astronauts jettisoned the lunar module and watched it slowly drift away. Hannigan remembers hearing Lovell's unbidden requiem for the spacecraft. "He did a good job," says Hannigan.
It was about another hour before the command module, headed for the Pacific, met the first tenuous wisps of Earth's atmosphere. Soon, as the Odyssey plunged into the atmosphere, those wisps would become a tremendous fireball of ionized air. The ionization would block radio communications for several minutes. In the meantime, the heat shield would be subjected to incredible temperatures and pressures, and if it had been cracked during the explosion four days earlier, the crew would burn up without ever being heard from again. Assuming the heat shield was okay, then the parachutes would deploy, slowing the Odyssey to a gentle splashdown—if the parachutes hadn't been turned into blocks of ice and the pyrotechnic charges intended to release them still worked. In a few more minutes Lovell, Haise, and Swigert would either be home free, or dead.
But the astronaut's last words before re-entry were not for themselves. They were for mission control. "I know all of us here want to thank all of you guys down there for the very fine job you did," Swigert transmitted. "That's affirm," chimed in Lovell.
A few seconds later, the Odyssey disappeared into a sea of radio static.
By Apollo 13, NASA had a pretty good handle on radio blackouts during re-entry, and for a given trajectory, it could work out how long—almost to the second—a spacecraft would be out of touch. In the Odyssey's case, it was about 3 minutes.
The appointed time came and went, and as the seconds turned into minutes without any sign of the Odyssey, the tension dragged out like a rusty blade through mission control.
"It was the worst time of the whole mission," agrees Kranz. "The blackout was a very difficult time for every controller. You ask yourself 'did I give the crew everything I needed to and was my data right?'...It was just a difficult time."
Bostick, the trajectory specialist, was in hell. "It was probably the worst I ever felt in my life," he told Spectrum. "My feeling was 'oh my god, we have done the impossible: we got them all the way home...and now something goes wrong in entry?...It was one of the most depressing [times] of my life..." Bostick's voice wavers for a moment, the memory still emotionally charged after thirty-five years. Then his voice strengthens into triumph, "but then, when we heard from them, it was the happiest moment of my life," he declares.
An antenna-laden plane, circling in the air as part of the recovery effort, had picked up the command module's signal: the crew had survived blackout! But even after radio contact was re-established, the astronaut's lives were still in danger. The main parachutes still had to be deployed. Kranz and the controllers stood rooted to their consoles, watching the main display on the front wall of mission control. The Odyssey was going to splash down, for good or ill, within sight of the live TV camera onboard the aircraft carrier leading the recovery effort, the USS Iwo Jima.
Suddenly, the parachutes—three red and white canopies—blossomed into view on the screen.
Pandemonium broke out in mission control. "I cried," says Kranz simply. "I think many of the controllers did. The emotional release at that instant was so intense many of us were unable to control our emotions. There were an awful lot of wet eyes that day."
Kraft was one of the few not swept away by the sight of the Odyssey gently descending into the Pacific, suspending his celebration until the crew was safely onboard the Iwo Jima. On seeing the deployed parachutes, "I felt fine," he remembers, "but I felt a lot better when I saw them walking on the deck of the carrier. That's the way I always was. Too many things could happen between the parachutes and the deck." Thirty-five years later, Kraft ponders the memory of the crew walking in the open air on the Iwo Jima. "That was one of the most excellent things I've ever seen," he finally says.
When The Crew and the flight controllers were finally reunited in Houston, there was, naturally, a raucous celebration, the highlight of which was the playing of an audio tape made by splicing together various mission control voice loop recordings. The creator was merciless, lampooning almost everyone involved, and got a great deal of mileage from Liebergot's "We may have had an instrumentation problem, Flight," and Kranz's later "I don't understand that," sound bites.