operative word "higher"...
It certainly isn't
lower.
http://en.wikipedia.org/wiki/War_emergency_power"For use in emergency situations, it produced more than 100% of the engine's normal rated power for a limited amount of time, often about five minutes."
"Maximum normal power would be limited by a mechanical stop, for instance a wire across the throttle lever slot, but a more forceful push would break the wire, allowing extra power."
http://en.wikipedia.org/wiki/Water_injection_%28engines%29"Piston engined petrol military aircraft utilized water injection technology prior to World War II in order to increase takeoff power. This was used so that heavily-laden fighters could take off from shorter runways, climb faster, and quickly reach high altitudes to intercept enemy bomber formations. Some fighter aircraft also used water injection to allow higher boost in short bursts during dogfights.
As a general rule, the fuel mixture is set at full rich on an aircraft engine when running it at high power settings (such as during takeoff). The extra fuel does not burn; its only purpose is to evaporate to absorb heat. This uses fuel faster and also decreases the efficiency of the combustion process. By using water injection, the cooling effect of the water allows the fuel mixture to be run leaner at its maximum power setting. Many military aircraft engines of the 1940s utilized a pressure carburetor, a type of fuel metering system similar to a throttle body injection system. In a water-injected engine, the pressure carburetor features a mechanical derichment valve which makes the system nearly automatic. When the pilot turns on the water injection pump, water pressure moves the derichment valve to restrict fuel flow to lean the mixture while at the same time mixing the water/methanol fluid in to the system. When the system runs out of fluid the derichment valve shuts and cuts off the water injection system, while enriching the fuel mixture to provide a cooling quench to prevent sudden detonation.
Due to the cooling effect of the water, Otto cycle aircraft engines with water injection can be made to produce more power through higher charge densities at the time of combustion. The additional charge density is typically achieved by allowing higher manifold pressures to be used before the onset of detonation; this is normally done by adding or increasing the amount of forced induction or further opening of the throttle, however a similar result may also be achieved via higher engine stoke. This has historically been the primary use of a water injection systems in aircraft.
The extra weight and complexity added by a water injection system was considered worthwhile for military purposes, while it is usually not considered worthwhile for civilian use. The one exception is racing aircraft, which are focused on making a tremendous amount of power for a short time; in this case the disadvantages of a water injection system are less important."
~~~~~~~~~
Now that we have the methodology fully laid out .... the net result is ..... ?

(In AHII .... the WEP key is activating water injection on the F4U ... or supposedly so.)
